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ABSTRACT  

In this research paper, the Natural Decomposition Method (NDM) is implemented for solving the linear and 

nonlinear Klein Gordon equations. 

The method which is based on the Natural Transform Method (NTM) and the Adomian Decomposition Method 

(ADM) is use to obtain exact solutions of three modelling problems from Mathematical Physics. 

The results obtained are in agreement with existing solutions obtained by other methods and demonstrate the 

simplicity and efficiency of the NDM. 

KEYWORDS:  Adomian Decomposition Method, Klein Gordon Equations, Natural Transform, Sumudu Transform, 

Laplace Transform 

1. INTRODUCTION 

The Klein Gordon Equation is considered one of the most important Mathematical models in quantum field 

theory, with appearances in relativistic physics, nonlinear optics and plasma physics. It arises in physics in linear and 

nonlinear forms and it is useful in describing disperse wave phenomenon [1]. 

We consider the Klein Gordon Equation 

( ) ( ) ( ) ( )( ) ( )  ,,,,, txhtxuFtxautxutxu xxtt =++−                                                                                  (1.1) 

subject to the initial conditions 

( ) ( ) ( ) ( ) 0,    ;   0, xgxuxfxu t ==
                                                                                                                (1.2)

 

Where u is a function of constant, a is  , and atx ( )txh , is a known analytic function and ( )( )txuF , is a 

nonlinear function of ( )txu ,   

There are many integral transform methods [3-7] existing in the literature to solve PDEs, ODEs and integral 

equations. Many numerical methods were developed recently for solving Klein Gordon Equations such as Reduced 

Differential Transform Method (RDTM) [2], Adomian Decomposition Method (ADM) [8,9]and Variational Iteration 

Method (VIM) [10,11]. 

In this paper, the following Klein Gordon Equations were solved: 

First, consider the homogenous Klein Gordon Equation [10] 
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 0=−− uuu xxtt                                                                                                                                                (1.3)
 

Subject to the initial conditions 

 ( ) ( )  00,   ;  sin10, =+= xuxxu t                                                                                                                  (1.4)
 

Where ( )txuu ,=  is a function of the variables tx  and . 

Secondly, the in homogenous nonlinear Klein Gordon Equation [2] 

( ) ( )txtxuuu xxtt
222 coscos +−=+−

                                                                                                          (1.5)
 

subject to the initial conditions 

 ( ) ( )  00,  ;   0, == xuxxu t                                                                                                                              (1.6) 

and lastly, the nonlinear non-homogenous Klein Gordon equation [1] 

 22 44222 txtxuuu xxtt +−=+−
                                                                                                                  (1.7)

 

Subject to the initial conditions 

( ) ( )  00,0, == xuxu t                                                                                                                                         (1.8)
 

The structure of the paper is organized as follows: In section 2, basic idea of the Natural Transform Method is 

discussed, section 3 give definitions and properties of the N-Transform. In section 4, the methodology of the NDM is 

explained and in section 5, the NDM is applied to solve three test examples in order to show its simplicity and efficiency. 

Section 6 is the conclusion. 

2. BASIC IDEA OF THE NATURAL TRANSFORM METHOD 

Here we discuss some preliminaries about the nature of the Natural Transform Method (NTM). 

Consider a function ( ) ( )∞∞−∈ ,  , ttf , then the general Integral transform is defined as follows [7, 12]: 

( )[ ]( ) ( ) ( )  ,∫
∞

∞−

=ℑ dttftskstf
                                                                                                                            (2.1)

 

where ( )tsk , represent the kernel of the transform, s is the real (complex) number which is independent of t .  

Note that when ( ) ( ) ( )sttsttJetsk s
n

st 1 and  , is , −− , then Equation (2.1) gives, respectively, Laplace Transform, 

Hankel Transform and Mellin Transform. 

Now, for ( ) ( )∞∞−∈ ,  , ttf consider the Integral transforms defined by  
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 ( )[ ]( ) ( ) ( )   ∫
∞

∞−

=ℑ dtutftkutf
                                                                                                                          (2.2)

 

and ( )[ ]( ) ( ) ( )∫
∞

∞−

=ℑ dtutftskustf ,,
                                                                                                               (2.3)

 

Note that: 

• when ( ) tetk −= , Equation (2.2) gives the Integral Sumudu transform, where parameter s is replaced by u . 

Moreover, for any value of n , the generalized Laplace and Sumudu transform are respectively defined by [7,12]: 

( )[ ] ( ) ( )∫
∞

− +

==
0

1

dttsfessFtf ntsn n

l                                                                                                              (2.4) 

and ( )[ ] ( ) ( )∫
∞

+−==
0

1  dttufeuuGtfS ntun n

                                                                                                   (2.5)

 

• when 0=n , Equation (2.4) and Equation (2.5) are the Laplace and Sumudu transform respectively. 

3. DEFINITIONS AND PROPERTIES OF THE N-TRANSFORM  

The natural transform of the function ( ) ( )∞∞−∈ ,  , ttf is defined by [7, 12]: 

( )[ ] ( ) ( ) ( ) ,,   ;  ,N ∞∞−∈== ∫
∞

∞−

− usdtutfeusRtf st

                                                                               (3.1)

 

where ( )[ ]tfN  is the natural transformation of the time function ( )tf and the variable us  and are the natural 

transform variables. 

Note: 

• Equation (3.1) can be written in the form [7,12]: 

( )[ ] ( ) ( )              ,,   ;  N ∞∞−∈= ∫
∞

∞−

− usdtutfetf st  

 = ( ) ( ) ( ) ( )







∞∈+








∞−∈ ∫∫

∞
−

∞−

−

0

0

0,us, ;  0,, ;  dtutfeusdtutfe stst  

= ( )[ ] ( )[ ] ( ) ( )[ ] ( ) ( )[ ] ( ) ( )usRusRttfttftftf ,,HNHNNN +−+− +=+−=+  

where ( )⋅H  is the Heaviside function.  
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• If the function ( ) ( )ttf H is defined on the positive real axis, with ( )∞∈ ,0t  and in the set 

( ) ( ) ( ) [ )












=∞×−∈<>∋= 2,1 , ,01 where,.,0,,: 21 jtMetftsMtfA j

t

jτττ , then we define the 

Natural transform (N-Transform) as [3,4]: 

( ) ( )[ ] ( )[ ] ( ) ( ) ( ) ,0,   ;  ,NHN
0

∞∈=== ∫
∞

−++ usdtutfeusRtfttf st                                                    (3.2) 

• If 1=u , Equation (3.2) can be reduced to the Sumudu transform. Now, we give some of the N-Transforms and 

the conversion to Sumudu and Laplace [7,12]. 

Table 1: Special N-Transforms and the Conversion to Sumudu and Laplace 

( ) ( )[ ] ( )[ ] ( )[ ]

( )

2222

2222

1
11

22

1

1

1
sin

11

1
cos

1
,...2,1 , 

!1

1

1

11

1

1
1

1
1

SN

su

u

us

u
t

s

s

uus

s
t

s
u

s

u
n

n

t
asauaus

e

s
u

s

u
t

ss

tftftftf

n
n

n

nn

at

+++

+++

=
−

−−−
−

−−

l

 

 
Some basic properties of the N-Transform are given as follows [7, 12]: 

• If ( )usR , is the natural transform and ( )sF is the Laplace transform of the function( )tf , then 

( )[ ] ( ) ( ) . 
1

 
1

,N
0








=== ∫
∞ −+

u

s
F

u
dttfe

u
usRtf u

st

 

• If ( )usR , is the natural transform and ( )uG is the Sumudu transform of the function ( )tf , then 

( )[ ] ( ) . 
1

 
1

,N
0








=






== ∫
∞

−+

s

u
G

s
dt

s

ut
fe

s
usRtf t  

• If ( )[ ] ( )usRtf ,N =+ , then ( )[ ] ( )usR
a

atf ,
1

N =+ . 

• If ( )[ ] ( )usRtf ,N =+ , then ( )[ ] ( ) ( )
u

f
usR

u

s
tf

0
,N −=′+ . 
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• If ( )[ ] ( )usRtf ,N =+ , then ( )[ ] ( ) ( ) ( )
u

f
f

u

s
usR

u

s
tf

0
0,N

22

2 ′
−−=′′+ . 

• Linearity property [12]: If ba  and are non-zero constants, and ( ) ( )tgtf  and are functions, then 

( ) ( )[ ] ( )[ ] ( )[ ] ( ) ( )usbusatgbtfatbgtaf ,G,FNNN +++++ ±=±=± . 

Moreover, ( ) ( )usus ,G and ,F ++  are the N-transforms of ( ) ( )tgtf  and respectively. 

4. THE NATURAL DECOMPOSITION METHOD 

The applicability of the natural decomposition method to Klein Gordon Equation is illustrated as follows: 

Consider the following Klein Gordon Equations (1.1) 

( ) ( ) ( ) ( )( ) ( )txhtxuFtxautxuLtxuL xt ,,,,, =++−
                                                                                  (4.1)

 

Subject to initial conditions 

( ) ( ) ( ) ( )xgxuxfxu t == 0,  ;  0,                                                                                                                      (4.2) 

where ( )txFu
x

L
t

L xt , ,  , 
2

2

2

2

∂
∂=

∂
∂=  is a nonlinear function of ( ) ( )txhtxu , and , is a known analytic 

function. 

By taking the N-transform of Equation (4.1), we have  

( )[ ] ( )[ ] ( )[ ] ( )( )[ ] ( )[ ]txhtxuFtxuatxuLtxuL xt ,N,N,N,N,N +++++ =++−   

Using the properties in Table 1 and the basic properties of the N-transforms, we get 

( ) ( ) ( ) ( )[ ][ ] ( )[ ] ( )( )[ ] ( )[ ] ,N,N,N,N
0,0,

,,
22

2

txhtxuftxuatxuL
u

xu

u

xsu
usxR

u

s
x

++++ =++−
′

−−
        (4.3) 

substituting Equation (4.2) into Equation (4.3) to get  

( ) ( ) ( ) ( )[ ][ ] ( )[ ] ( )( )[ ] ( )[ ] ,N,N,N,N,,
22

2

txhtxuftxuatxuL
u

xg

u

xsf
usxR

u

s
x

++++ =++−−−
                    (4.4) 

( ) ( ) ( ) ( )[ ][ ] ( )[ ] ( )[ ] ( )( )[ ] ,N,N,N,N,,
22

2

txuftxuatxhtxuL
u

xg

u

xsf
usxR

u

s
x

++++ −−+++=
                          (4.5) 

( ) ( ) ( ) ( )[ ][ ] ( )[ ] ( )[ ] ( )( )[ ]  ,N,N,N,N,,
2

2

2

2

2

2

2

2

2
txuf

s

u
txu

s

au
txh

s

u
txuL

s

u

s

xug

s

xf
usxR x

++++ −−+++=
        (4.6) 

Taking the inverse natural transform of Equation (4.6), we have  
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( ) ( ) ( ) ( )[ ] ( )[ ][ ]

( )[ ] ( )( )[ ]                   ,N,NN

,NN,NN,,N

2

2

2

2
1

2

2
1

2

2

2
1 1









+−









+







++=

++−

+−+− −

txuf
s

u
txu

s

u
a

txuL
s

u
txh

s

u

s

xug

s

xf
usxR x

                                             (4.7) 

From Equation (4.7), we have 

( ) ( ) ( )( )[ ] ( )[ ] ,N,NN,, 1
2

2
1

txkutxuL
s

u
txJtxu x

−+ −







+=

−

                                                                            (4.8) 

Where ( ) ( )( ) ( )( )[ ] ( )txJtxuf
s

u
txu

s

u
atxku , and ,N,N,

2

2

2

2
++ +=  represents the term arising from the 

known analytical function and the given initial conditions. 

Now to deal with the nonlinear term, we represent the solution in an infinite series form.  

( ) ( )   ,, 
0
∑

∞

=

=
n

n txutxu
                                                                                                                                     (4.9) 

also, the nonlinear term 

( ) ( )  , as written becan  , 
0
∑

∞

=

=
n

nAtxkutxku
                                                                                                          (4.10) 

Where the s'nA are the polynomials of nuuu  , ... ,, 10 and can be calculated by the formula [4] 

  ... ,2,1,0  , 
!

1
  

0

=














= ∑
=

nuf
dx

d

n
A

n

i
i

i

n

n

n λ
                                                                                                                (4.11) 

Substituting Equation (4.9) and Equation (4.10) into Equation (4.8) to get  

( ) ( ) ( )  ,NN,,
00

2

2
1

0








−







+= ∑∑∑
∞

=

∞

=

+−
∞

= n
n

n
nx

n
n AtxuL

s

u
txJtxu                                                                            (4.12) 

by comparing both sides of Equation (4.2) we conclude that  

 

( ) ( )

( ) ( )( )

( ) ( )( ) 







−=









−=

=

+−

+−

112

2
1

2

002

2
1

1

0

,NN,

,NN,

,,

AtxuL
s

u
txu

AtxuL
s

u
txu

txJtxu

x

x

 

Continuing in this manner, we get the general recursive relation given by: 
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( ) ( )( )   1  ,  ,NN,
2

2
1

1 ≥







−= +−

+ nAtxuL
s

u
txu nnxn

                                                                                       (4.13) 

Hence, from the general recursive relation in Equation (4.13), we can easily compute the remaining components 

of 

( ) ( ) ( ) ( )txutxutxutxu ,   where, . . . , , , , as , 021

is always the given initial conditions. Finally the exact solution is 

given by 

 

( ) ( )∑
∞

=

=
0

,,
n

n txutxu
. 

5. APPLICATIONS 

Here, we employ the NDM to three numerical examples and then compare our solutions to existing exact 

solutions. 

Example 5.1: Consider the homogenous Klein Gordon Equation 

 

 0=−− uuu xxtt                                                                                                                                               (5.1)
 

Subject to the initial conditions 

 

( ) ( )  00,  ,  sin10, =+= xuxxu t                                                                                                                    (5.2)
 

We first take the N-Transform of Equation (5.1), to obtain  

 

[ ] [ ] [ ] [ ]0NNNN ++++ =−− uuu xxtt

 

Using the properties in Table 1 and properties of the N-Transform, we have 

 

( ) ( ) ( ) [ ] [ ] 0NN
0,0,

,,
22

2

=−−
′

−− ++ uu
u

xu

u

xsu
usxR

u

s
xx

                                                                       (5.3) 

Substituting Equation (5.2) into Equation (5.3), we have 

 

( ) ( ) [ ] N
sin1

,,
2

2

uu
s

u

s

x
usxR xx +++= +

                                                                                                  (5.4) 

Now, taking the inverse N-Transform of Equation (5.4), we have  
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( )[ ] [ ]







++




 += +−−− uu
s

u

s

x
usxR xxNN

sin1
N,,N

2

2
111

                                                                         (5.5) 

From Table 1, Equation (5.5) becomes 

 

( ) ( ) [ ]  NNsin1,
2

2
1









+++= +− uu

s

u
xtxu xx

                                                                                             (5.6) 

From Equation (5.6), we can write  

 

( )  NNsin1,
00

2

2
1
















 +++= ∑∑
∞

=

∞

=

+−

n
n

n
n AB

s

u
xtxu

                                                                                 (5.7) 

Now from Equation (5.7), we can conclude that 

 

( ) ( ) [ ]







+=+= +−

002

2
1

10 NN,   , sin1, AB
s

u
txuxtxu

 

We continue in this manner to get the general recursive relation  

 

( ) [ ]   .1   ,  NN,
2

2
1

1 ≥







+= +−

+ nAB
s

u
txu nnn

                                                                                             (5.8) 

Note that 

( ) [ ] [ ]







+=








+= +−+−

002

2
1

002

2
1

1 NNNN, uu
s

u
AB

s

u
txu xx

 

 

[ ] .
2

1
N

1
N1NN 2

3

2
1

2

2
1

2

2
1 t

s

u

ss

u

s

u =







=















=







= −−+−

 

and that 

( ) ( ) ( ) ( ) ( ) .
2

1
sin1...,,,, Hence .1  , 0, 2

2101 txtxutxutxutxuntxun ++=+++=≥∀=+

 

Hence the exact solution is 

( ) . coshsin, txtxu +=
[1]. 

Example 5.2: Consider the inhomogenous nonlinear Klein Gordon Equation 

tcoscos 222 xtxuuu xxtt +−=+−
                                                                                                              (5.9) 

Subject to the initial conditions 
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( ) ( )   00,  ,  0, == xuxxu t                                                                                                                             (5.10)
 

We first take the N-Transform of Equation (5.1), to obtain  

 

[ ] [ ] [ ] [ ]txtxuuu xxtt
222 coscosNNNN +−=+− ++++

 

Using the properties in Table 1 and properties of the N-Transform, we have 

 

( ) ( ) ( ) [ ] [ ] [ ] [ ]  cosxNcosNNN
0,0,

,, 222
22

2

ttxuu
u

xu

u

xsu
usxR

u

s
xx

++++ +−=+−
′

−−
                              (5.11) 

Substituting Equation (5.10) into Equation (5.11), we have  

( ) [ ] N,, 2
2

22

222

22

222

2

uu
s

u

us

s

s

xu

us

s

s

xu

s

x
usxR xx −+









+
+








+
−= +

                                                   (5.12) 

Now, taking the inverse N-Transform of Equation (5.12), we have 

( )[ ] ( ) ( ) [ ]







−+













+
+








+
−




= +−−−−− 2
2

2
1

222

22
1

22

2
111 NNNNN,,N uu

s

u

us

xu

uss

xu

s

x
usxR xx

                     (5.13) 

From Table 1, Equation (5.13) becomes  

( ) [ ]  NNsincos, 2
2

2
122









−++= +− uu

s

u
txtxtxu xx

                                                                             (5.14) 

From Equation (5.14), we can write  

( )  NNsincos,
00

2

2
122
















 −++= ∑∑
∞

=

∞

=

+−

n
n

n
n AB

s

u
txtxtxu

                                                               (5.15) 

Here, An is the Adomian polynomial which represent the nonlinear terms. So, we compute few components of An 

and some values of Bn.  

 
xx

xx

xx

uBuuuA

uBuuA

uBuA

22
2

1202

11101

00
2

00

2

2

=+=
==
==

  

Now from Equation (5.15), we can conclude that 
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( ) ( ) [ ]







−=+= +−

002

2
1

1
22

0 NN,   ,t sincos, AB
s

u
txuxtxtxu

 

We continue in this manner to get the general recursive relation 

 

( ) [ ]  .1   ,  NN,
2

2
1

1 ≥







−= +−

+ nAB
s

u
txu nnn

                                                                                            (5.16) 

Note that we can calculate 

 

( ) [ ] [ ]

( ) [ ]

...sin...N                                                                         

...cosNNsinsincos2cossin2NN

NNNN,

22
2

22
12

22
2

2
14423222

2

2
1

2
002

2
1

002

2
1

1

+−=+




















+
−=

+







−=








+−−=









−=








−=

−

+−+−

+−+−

tx
us

u
x

tx
s

u
txttxtxt

s

u

uu
s

u
AB

s

u
txu xx

  

Hence by cancelling the noise term that appears between 

( ) ( )txutxu , and , 10

one can see that the non-cancelled 

term of 

( )txu ,0

 still satisfies the given differential equation, which lead to an exact solution of the form 
 

( ) .cos, txtxu =
 

This is in agreement with the result obtained by RDTM [2]. 

Example 5.3: Consider the nonlinear, nonhomogenous Klein Gordon Equation 

 

 2-2 44222 txtxuuu xxtt +=+−
                                                                                                                             (5.17) 

Subject to the initial conditions 

 

( ) ( )  00, 0, == xuxu t                                                                                                                                      (5.18)
 

We first take the N-Transform of Equation (5.17), to obtain  

 

[ ] [ ] [ ] [ ] [ ] [ ]44222 N2N2NNNN txtxuuu xxtt
++++++ +−=+−

 

Using the properties in Table 1 and properties of the N-Transform, we have  
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( ) ( ) ( ) [ ] [ ] [ ] [ ] [ ] N2N2NNN
0,0,

,, 44222
22

2

txtxuu
u

xu

u

xsu
usxR

u

s
xx

+++++ +−=+−
′

−−
                           (5.19) 

Substituting Equation (5.18) into Equation (5.19), we have  

( ) [ ] N2442,, 2
2

2

7

6
4

5

4

3

2
2 uu

s

u

s

u
x

s

u

s

u
xusxR xx −++−= +

                                                                      (5.20) 

Now taking the inverse N-Transform of Equation (5.20), we have  

( )[ ] [ ]  NNN24N4N2,,N 2
2

2
1

7

6
14

5

4
1

3

2
121









−+








+







−







= +−−−−− uu

s

u

s

u
x

s

u

s

u
xusxR xx

                 (5.21) 

From Table 1, Equation (5.21) becomes  

( ) [ ]







−++−= +− 2

2

2
164422 NN

30

1

6

1
, uu

s

u
txttxtxu xx

                                                                         (5.22) 

From Equation (5.22), we can write  

 

( )  NN
30

1

6

1
,

00
2

2
164422
















 −++−= ∑∑
∞

=

∞

=

+−

n
n

n
n AB

s

u
txttxtxu

                                                       (5.23) 

Here, An is the Adomian polynomial which represent the nonlinear terms. So, we compute few components of An 

and some values of Bn.  

 
xx

xx

xx

uBuuuA

uBuuA

uBuA

22
2

1202

11101

00
2

00

2

2

=+=
==
==

  

Now from Equation (5.23), we can conclude that 

 

( ) ( ) [ ]







−=+−= +−

002

2
1

1
64422

0 NN,   , 
30

1

6

1
, AB

s

u
txutxttxtxu

 

We continue in this manner to get the general recursive relation  

( ) [ ]  .1   ,  NN,
2

2
1

1 ≥







−= +−

+ nAB
s

u
txu nnn

                                                                                             (5.24) 
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Note that we can calculate 
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Hence by cancelling the noise term that appears between  

 

( ) ( )txutxu , and , 10

one can see that the non-cancelled term of 

( )txu ,0

 still satisfies the given differential 

equation, which lead to an exact solution of the form 
 

( ) ., 22txtxu =
 

This is in agreement with the result obtained by MDM [1]. 

6. CONCLUSIONS 

In this research paper, the Natural Decomposition Method (NDM) was applied to solve three nonlinear Klein 

Gordon Equations. Exact solutions of the three applications were obtained. The method demonstrates significant 

improvement over existing techniques. 
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